

SMARCO

SMART Communities Skills Development in Europe

Promotion of
Innovative
Infrastructure
Design

Co-funded by
the European Union

Funded by the European Union. Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or the European Education and Culture Executive Agency (EACEA). Neither the European Union nor EACEA can be held responsible for them.

Unit 2

Energy Management

Co-funded by
the European Union

Funded by the European Union. Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or the European Education and Culture Executive Agency (EACEA). Neither the European Union nor EACEA can be held responsible for them.

Module - Aim and Objective

- **Evaluate** and select sustainable technologies and materials for infrastructure development projects.
- **Consider** adaptive organizational frameworks that enhance operational resilience and efficiency.
- **Analyse** the lifecycle performance of physical structures to optimize maintenance strategies.
- **Integrate** cutting-edge digital solutions to improve infrastructure functionality and monitoring.

Co-funded by
the European Union

Module - Content

The aim of this module is to provide a **comprehensive understanding of key sustainability concepts** within the context of smart communities.

The module explores **Life Cycle Assessment (LCA)**, **energy management**, and **waste management**, focusing on how these approaches can support informed decision-making and enable more efficient, sustainable, and resilient community systems.

Co-funded by
the European Union

Unit 2 - Aim and Objective

This unit aims to develop a clear understanding of **Smart Cities** and **Smart Buildings**, including their roles, functions, and best practices in creating more sustainable, efficient, and connected urban environments.

The unit will define the key concepts and explore the **core components of Smart Buildings**, emphasizing how technological innovation shapes their performance and value.

The unit will also address the significance of **enabling technologies** such as the **Internet of Things (IoT)**, **Big Data analytics**, **Artificial Intelligence (AI)**, and **Blockchain**, highlighting their role in improving operational efficiency, security, and user experience within Smart Buildings.

Additionally, the concept of **Digital Twins** will be introduced as an emerging tool for real-time monitoring, simulation, and decision support in building management.

Co-funded by
the European Union

Unit 2 - Learning Outcomes

- Know what Smart Buildings are and their roles and best practices in Smart Cities.
- Understand what the components of a Smart Building are and how technology plays a part in it.
- Understand the importance of Internet of Things, Big Data Analysis, Artificial Intelligence and Blockchains in Smart Buildings.
- Know what a Digital Twin is.

Co-funded by
the European Union

Unit - Content

- Definition of Smart Cities
- Definition of Smart Buildings
- Components of Smart Buildings
 - Internet of Things
 - Big Data
 - Artificial Intelligence
 - Blockchain
 - Digital Twins

Co-funded by
the European Union

The Smart City of Tomorrow

The cities of the future will be shaped by **intelligent, energy-aware buildings**.

Supporting Points

- Residential buildings are among the **largest energy consumers**.
- Improving their energy performance is **essential to meet sustainability goals**.

Co-funded by
the European Union

IPPCS Vision of 2050

The *Intergovernmental Panel on Climate Change (IPCC)* is a United Nations body that **provides scientific assessments** on climate change, its impacts, and strategies for mitigation.

According to the IPCC Special Report on „Global Warming of 1.5°C“ buildings of the future should be:

- **Smart**
using data and automation to optimize performance
- **Interconnected**
linked within city-wide energy and digital networks
- **Highly energy-efficient**
minimizing energy use and emissions
- **Powered by renewables**
relying mainly on clean, sustainable sources for heating, cooling, and electricity

Co-funded by
the European Union

<https://www.ipcc.ch/sr15/>

Smart Buildings and Smart Cities

Smart buildings are essential for the successful development of smart cities.

They contribute by:

- Improving **energy efficiency**
- Enabling **smart resource management**
- Supporting **sustainable mobility**
- Enhancing **connectivity and digital infrastructure**
- Promoting **safety and better air quality**

ChatGPT

Co-funded by
the European Union

Definition of Smart Buildings

Smart buildings are structures designed to integrate advanced technologies into their core systems.

They use **data, sensors, and communication technologies (IoT)** to monitor and adapt to changing conditions, improving energy use, comfort, and efficiency.

The idea has evolved from early definitions in the 1990s to modern standards like **ISO 37173:2023**, which describes smart buildings as those that can learn, predict, and respond to the needs of occupants and urban environments.

Buildings function as **complex systems** that **manage air, water, and electricity**.

Co-funded by
the European Union

The Concept of Smart Buildings

GOAL

Reduce energy consumption, optimize resource use, and improve user comfort.

A smart building is designed to **adapt to time and technology**, aiming for **efficiency and effectiveness** in its operations.

By integrating technology, buildings become **responsive, intelligent, and proactive** rather than static structures.

Co-funded by
the European Union

Components of a Smart Building

- **Central Control System**

The “brain” that manages all data, devices, and decisions.

- **IoT (Internet of Things) Sensors:**

- Measure quantities like temperature, light, occupancy, energy use
- Collect data for facility managers
- Provide feedback to users or other systems

- **Actuators**

- Receive signals from sensors
- Translate data into actions (e.g., adjusting HVAC, lighting, or security systems)

- **Smart Meters & Networks**

Form the hardware backbone, enabling real-time monitoring and automation

Co-funded by
the European Union

The Role of Technology

Smart Technologies help buildings:

- **IoT, AI, Digital Twins** help process, analyze, and store data
- **IoT-based systems** and **sensors** monitor and control resource flows
- Smart technologies ensure that resources are delivered **cleanly, efficiently, and sustainably**
- They allow the building to behave like a living organism with **advanced capabilities and performance**

In smart cities, **adopting advanced technologies** for building monitoring is **crucial**.

Co-funded by
the European Union

IoT – Internet of Things

IoT refers to the **network of interconnected devices** that can communicate with each other, humans, and their environment.

Sensors in buildings can detect:

- **Energy consumption** (electricity, heating, cooling)
- **Environmental conditions** (temperature, humidity, air quality)
- **Security** (motion detectors, access control)

This real-time data allows building systems to optimize energy usage, predict maintenance needs, and enhance comfort and safety.

Co-funded by
the European Union

IoT in Buildings

Examples:

- Smart thermostats adjusting temperature based on occupancy
- Lighting systems turning off automatically in empty rooms
- Security (motion detectors, access control)

IoT forms the **foundation of smart communities** by enabling buildings to "think" and respond intelligently.

Co-funded by
the European Union

Big Data & Data Analysis

Big Data refers to **large, complex datasets** collected from IoT devices that require advanced tools for analysis.

Purpose in smart buildings:

- Identify usage trends and patterns in energy consumption
- Detect inefficiencies and potential areas for improvement
- Support decision-making for energy-saving strategies

Co-funded by
the European Union

Leveraging Big Data for Energy Efficiency

Examples:

- **Analyzing** weekly energy peaks to optimize HVAC schedules
- **Tracking** water usage to prevent waste
- **Predictive** maintenance of building equipment

Data analysis turns raw sensor data into **actionable insights**, helping smart communities become more sustainable and cost-efficient.

Co-funded by
the European Union

Artificial Intelligence (AI)

AI involves machines learning from data to **make decisions, predictions, and optimizations** automatically.

Applications in Smart Buildings:

- AI predicting energy demand to reduce peak load costs
- Smart elevators adjusting operation based on traffic patterns
- AI-driven security cameras detecting unusual behavior

AI makes smart buildings **proactive**, rather than reactive, reducing energy waste and improving safety.

Co-funded by
the European Union

Blockchain for Smart Community Management

Blockchain is a **secure, decentralized ledger technology** that ensures transparency and trust in transactions.

Applications in Energy and Resource Management:

- Manage energy trading between buildings (peer-to-peer energy sharing)
- Automate agreements with smart contracts for energy or waste management
- Securely track waste disposal and recycling processes

Blockchain ensures that all **transactions** in a smart community are **secure, verifiable, and tamper-proof**, boosting efficiency and trust.

Co-funded by
the European Union

Digital Twins in Smart Buildings

A Digital Twin is a **virtual replica** of a physical building that mirrors both its static structure and dynamic operations throughout its lifecycle.

Purpose of a Digital Twin:

- Simulate building behavior in real-time
- Optimize performance and energy efficiency
- Predict maintenance needs and operational issues

Digital twins are used throughout the **entire lifecycle** of a building, from initial design and construction to execution, operation, and maintenance, providing **continuous monitoring, simulation, and optimization**.

Co-funded by
the European Union

How Digital Twins work

To create a functional Digital Twin, various data sources must work together.

The combination of **Building Information Modeling (BIM)** and **Internet of Things (IoT)** technologies provides both the **structural intelligence** and **real-time awareness** a smart building needs.

Building Information Modeling (BIM)

- Acts as the foundation of the Digital Twin by offering **detailed geometric, spatial, and semantic information** about the building's components.
- Used during the **design, construction, and maintenance** phases to define how the building is built and organized.

Internet of Things (IoT)

- Brings the Digital Twin to life by providing **dynamic, real-time operational data**.
- Sensors and devices continuously monitor **temperature, occupancy, energy use, air quality, and equipment status** during the **execution and operation** stages.

Co-funded by
the European Union

BIM and IoT Integration

When BIM's static design data and IoT's dynamic sensor data are integrated, the result is a **comprehensive, living digital replica** of the building.

This fusion enables continuous **simulation, prediction, and optimization**, allowing building managers to make data-driven decisions that improve efficiency, sustainability, and comfort.

Co-funded by
the European Union

The Role of Smart Buildings

Smart buildings are at the heart of the transition toward **sustainable and circular Smart Cities**. By combining **energy efficiency**, **intelligent resource management**, and **advanced digital technologies**, these buildings not only reduce environmental impact but also improve citizens' quality of life.

Key Points

● **Driving Sustainability**

- Smart buildings help minimize energy waste, promote renewable energy use, and lower carbon emissions.
- Buildings currently account for **30% of global energy use** and **40% of carbon emissions**, highlighting the need for smarter management systems.

● **Collaboration & Shared Vision**

- Success depends on close cooperation between **public and private sectors**, supported by a common commitment to sustainability and innovation.

Co-funded by
the European Union

The Role of Smart Buildings

Smart buildings are at the heart of the transition toward **sustainable and circular Smart Cities**. By combining **energy efficiency**, **intelligent resource management**, and **advanced digital technologies**, these buildings not only reduce environmental impact but also improve citizens' quality of life.

Key Points

- **The Power of Connectivity**
 - Modern IoT networks make it possible to connect devices and systems that were once isolated, unlocking new opportunities for **efficiency**, **comfort**, and **environmental responsibility**.
- **Technological Integration**
 - The integration of **AI** and **IoT** connects buildings, transportation, and infrastructure into a single, data-driven ecosystem.
 - IoT sensors, intelligent analytics, and cloud computing enable buildings that **interact with occupants**, **adapt to conditions**, and **optimize energy use** automatically.

Co-funded by
the European Union

Best Practices for Smart Buildings

As we look ahead to **2050**, we envision cities where technology and sustainability work hand in hand to create **intelligent, interconnected urban environments**.

In these **smart cities**, buildings, transportation systems, and public services will communicate seamlessly through advanced digital networks, improving comfort, safety, and energy efficiency for all citizens.

Smart buildings will be at the heart of this transformation, acting as **self-regulating, energy-efficient ecosystems** that adapt to user needs while minimizing environmental impact.

However, reaching this vision requires more than just technology. It demands **strategic planning, collaboration, and the adoption of best practices** that guide how smart buildings and communities are designed, built, and managed.

These principles ensure that digital innovation truly enhances urban living and promotes long-term sustainability.

Co-funded by
the European Union

Best Practices for Smart Buildings

● **Citizen Involvement**

- Engage residents in decision-making and smart city initiatives.
- Educate communities about sustainability and responsible resource use.

● **Public–Private Collaboration:**

- Encourage partnerships between governments, businesses, and citizens to develop, fund, and implement smart projects.

● **Adoption of Open Standards:**

- Promote interoperability among technologies and systems to support integration and innovation.

● **Continuous Data Monitoring:**

- Collect and analyze data continuously to identify opportunities for improvement, efficiency, and optimization.

Co-funded by
the European Union

Unit completed! – What's next?

To consolidate your learning and reflect on the key concepts covered, please take a moment to complete this quiz.

Your feedback and results will help you track your progress and support continuous improvement of the training experience.

Click the [link](#) to begin the quiz!

Co-funded by
the European Union

References

Afonso, J. A., Monteiro, V., & Afonso, J. L. (2023). Internet of things systems and applications for smart buildings. *Energies*, 16(6), 2757.

Chevallier, Z., Finance, B., & Boulakia, B. C. (2020). A Reference Architecture for Smart Building Digital Twin. In *SeDiT@ ESWC* (pp. 1-12).

Eneyew, D. D., Capretz, M. A., & Bitsuamlak, G. T. (2022). Toward smart-building digital twins: BIM and IoT data integration. *IEEE Access*, 10, 130487-130506.

Genkin, M., & McArthur, J. J. (2023). B-SMART: A reference architecture for artificially intelligent autonomic smart buildings. *Engineering Applications of Artificial Intelligence*, 121, 106063.

Gracias, J. S., Parnell, G. S., Specking, E., Pohl, E. A., & Buchanan, R. (2023). Smart Cities—A Structured Literature Review. *Smart Cities*, 6(4), 1719-1743.

Hossain, M., Weng, Z., Schiano-Phan, R., Scott, D., & Lau, B. (2020). Application of IoT and BEMS to visualise the environmental performance of an educational building. *Energies*, 13(15), 4009.

Pacifico, M.G., Pinto, M. R., & Novellino, A. (2023). Digital - Twin for an innovative waterfront management. Strategy pilot project DSH2030.In E. Arbizzani, E. Cangelli, C. Clemente, F. Cuomo, F. Giofrè, A. M. Giovenale, M. Palme, & S. Paris (Eds.), *Technological imagination in the green and digital transition*. Springer.

Sanchez-Sutil, F., & Cano-Ortega, A. (2023). Smart plug for monitoring and controlling electrical devices with a wireless communication system integrated in a LoRaWAN. *Expert Systems with Applications*, 213, 118976.

Saputra, P.C., & Ramadhan, A. (2023). Smart building trend, role, and position: a systematic literature review. *International Journal of Reconfigurable and Embedded Systems*, 12(1), 29.

Selvaraj, R., Kuthadi, V. M., & Baskar, S. (2023). Smart building energy management and monitoring system based on artificial intelligence in smart city. *Sustainable Energy Technologies and Assessments*, 56, 103090.

Tanasiev, V., Pluteanu, S., Necula, H. & Pătrascu, R. (2022). Enhancing monitoring and control of an HVAC system through IoT. *Energies*, 15(3), 924.2022

Co-funded by
the European Union

SMARCO

SMART Communities Skills Development in Europe

www.smarco.eu

info@smarco.eu

We are social! Follow us on:

[@smarcoproject](https://www.instagram.com/@smarcoproject)

[@smarcoproject](https://www.linkedin.com/company/@smarcoproject)

[@smarcoproject](https://www.youtube.com/@smarcoproject)

Co-funded by
the European Union

Project 101186291 – SMARCO